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Abstract-Correlating equations for heat transfer by natural convection from horizontal cyhnders to a 
cylindrical enclosure are obtained using a conduction boundary-layer model. The correlation is valid 
for heat transfer by conduction. laminar flow and turbulent flow. The results approach the correlatton 
for heat transfer from a free horizontal cylinder as the outer cylinder diameter becomes Infinite and for 
quasi-steady heat transfer to fluid within a horizontal cylinder as the inner cylinder diameter approaches 
zero. Horizontal concentric. eccentric and arrays of cylinders within the outer cylinder are geometries 

included in the correlation. 

NOMENCLATURE 

inner cylinder area; 

inner cylinder diameter; 
outer cylinder diameter; 
mean overall heat-transfer coefficient: 
mean inner cylinder heat-transfer 
coefficient, = Q:XDi I( 7, - Tb): 
mean outer cylinder heat-transfer 
coefficient, = Q/nD,l(~~- To): 
thermal conductivity; 
mean equivalent conductivity: 
length along cylinder; 
gap width. = R, - R, : 
number of inner cylinders; 
mean Nusselt number for inner cylinder 
boundary-layer conditions. = I;< Di/k; 
mean Nusselt number for outer cylinder 
boundary-layer conditions. = &Do/k; 
mean Nusselt number for conduction or 
convection within an enclosure; 
mean Nusselt number for convection, 
= h,D,‘k. Q = h;nDil(7;-Th): 
mean Nusselt number for convection, 
= hDi/k, Q = hnDil(7;- T,); 
mean Nusselt number for conduction 
within an enclosure; 
mean Nusselt number for convection 
within an enclosure. = hDJk. 
Q = hnD,I(~- T.): 
Prandtl number; 
rate of total heat flow: 
inner cylinder radius: 

R 
R:: 

outer cylinder radius; 
Rayleigh number: 

RU’. Rayleigh number using AT = T - 70 : 
7. temperature. 

Greek symbols 

d’, . mean thickness of inner cylinder film: 
6,. mean thickness of outer cylinder film; 
C. eccentricity of inner cylinder: distance 

moved from its concentric position. 

subscripts 

b. bulk; 
D. cylinder diameter used as length scale; 

L. 
inner cylinder; 
gap width used as length scale: 

0. outer cylinder. 

INTRODUCTlOh 

NUMEROUS correlations have been proposed for 
overall heat transfer by natural convection between 
horizontal concentric cylinders. Kraussold [l] and 
Bishop [2] found the mean equivalent conductivity to 
be essentially a function of Rayleigh number based on 
the gap thickness for LiDi < 3. A better correlation 
was obtained by Itoh. Fujita, Nishiwaki and Hirata [3] 
who used J(Ri R.) ln(R, lR,I as the characteristic length. 
Raithby and Hollands [4] used a conduction layer 
model similar to that first proposed by Langmuir as 
reported by Eckert [5] but without curvature effects. 
Another conduction model was used by Barelko and 
Shtessel [6]. 

Several heat-transfer correlations for natural convec- 
tion from a single horizontal cylinder have been ob- 
tained including those by McAdams [7]. Raithby and 
Hollands [8] and Churchill and Chu [9]. The only 
correlations developed for all Rayleigh and Prandtl 
numbers are those in [8] and [9]. 

The present method of correlating overall heat- 
transfer results combines conduction solutions, laminar 
boundary-layer solutions and experimental data. A 
single correlation is developed to predict heat transfer 
from a single horizontal cylinder. to a fluid inside a 
horizontal cylinder under quasi-steady conditions and 
between concentric and eccentric cylinders. Slight 
modifications enable the heat-transfer coefficients for 
more than one inner cylinder within an outer cylinder 
to be. predicted. 

ANALYSIS 

Consider two infinitely long horizontal cylinders 
maintained at different temperatures with the smaller 
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diameter cylinder positioned wlthm the larger one. 
Heat is transferred through a fluid contained in the 
space between the cylinders by natural convection. ,A 
conduction film is assumed to exist in the fluid near 
the surface of each cylinder which constitutes the 
thermal resistance. The central fluid region is assumed 
to have an average bulk temperature. T. Thermal 
energy is transported from the inner film fo the outer 
film by convection with no losses. The average heat- 
transfer coefficient for the inner film determined from 

is given by 

&= 
2k 

(2) 

This is simply conduction through an annulus with an 
inner diameter Diq mean thickness & and thermal con- 
ductivity k. Similarly at the outer cylinder the heat- 
transfer coefficient based on the area of the outer 
cylinder is 

2 
5= r-..-I’ (31 

Combining the two thermal resistances in series gives 
an expression for the overall heat-transfer coefficient 
for the cylinders 

The average Nusselt number for convection is found 
by combining equations (2), (3) and (4) 

‘% 

which can be written 

%,_. = 
2 

1+2/G, 

[ 1 
(6) 

~- 
In l-2:%, 

The significance of the term Gi becomes clear in the 
limit as D, -+ cc. This corresponds to heat transfer by 

natural convectlon from the outside surface ai .I single 
horizontal cylinder. Equation (6) reduces to 

.- 
,_!uo,&_ = _____L~_. 

In[ I t2 Nu,] 
1-j 

When the thickness of the boundary layer (‘ii) is very 
small compared to the cylinder diameter ID,) 17) 

reduces to 

.VUD,._* = .Vlfi. IYI 

This is the boundary-layer approximation in which 
curvature effects are neglected. 

For laminar flow ivUi can be written as 

Xii = O.SlSRUb, 1 + 
[ (@5g,“]-‘” ,9) 

which IS in the form used in [9], to correlate laminar 
boundary-layer heat transfer by natural convection 
from a horizontal cylinder. The power in the Prandtl 
number term is here modified to fit the boundary- 
layer solutions of Chiang and Kaye [lo] and Lin and 
Chao [I l] at Pr = 0.7 rather than that of Saville and 
Churchill [ 121 which is slightly lower than the others. 
The temperature difference used in the Rayleigh num- 
ber is T;- z and the length scale Di. 

No boundary-layer solutions are available for tur- 
bulent flow from a singJe horizontal cylinder. The 
expression 

Mu, = 0.1 f&I&3 (10) 

correlates experimental heat-transfer data for gases and 
liquids as mentioned by Cess [13] and correlates the 
turbulent mass-transfer data of Schlitz [ 141 very well. 

The two relations for laminar and turbulent flow 
can be combined using the method of Churchill and 
Usagi [15]. To give an expression valid for all 
boundary-layer flow conditions 

1 
I I5 

-i- 10.1 &l&J)” (II) 

The exponent 15 was chosen somewhat arbitrarily to 
fit the experimental data. 

Placing this expression for %, into (7) incorporates 
curvature efiects and gves a correlation for natural 
convection heat transfer from a smgle horizontal 
cylinder valid at any Rayleigh and Prandtl number. 

Results from this expression at Pr = 0.7 are listed in Table 1 with numerical values obtained from previous 
correlations. The present values are very close to those of [8] in particular at small Rayleigh numbers. These 
results fit the data of Collis and Williams [ 161 much better than the correlation of [9]. 

The Nusselt number should approach zero as the Rayleigh number decreases since the heat transfer by 
conduction from a cylinder to an infinitely large medium is zero. This is not true for the correlation presented 
in [9] which uses an empirical non-zero constant as the lower limiting value. 
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Table 1. Comparison of correlations for the overall Nusselt number for natural convection 
from a free horizontal cylinder to gases (Pr = 0.7) 

[233 P41 c91 PI Equation (12) 

13 
12 
11 
i0 
9 
8 
7 
6 
5 
4 
3 
2 

0 
-1 
-2 
-3 
-4 
-5 
-6 
-7 
-8 
-9 

-10 
-11 
- 12 
-13 

93.3 
51.3 
28.8 
16.2 
9.33 
5.37 
3.16 
2.11 
1.51 
1.08 
0.841 
0.661 
0.550 
0.490 

88.3 
49.0 
27.4 
15.5 
8.93 
5.31 
3.3 I 
2.17 
1.44 
0.957 
0.697 
0.542 
0.442 
0.372 
0.322 
0.283 
0.252 

2276 2123 2155 
1069 992 1001 

505 466 465 
240 221 216 
116 107 101 
56.5 53.0 47.7 
28.2 27.3 24.1 
14.5 14.7 13.6 
7.76 8.32 8.05 
4.37 4.97 4.92 
2.61 3.13 3.14 

2.11 I.67 2.09 2.10 
1.51 1.15 1.48 1.49 
1.07 0.848 1.11 1.1 f 
0.800 0.670 0.868 0.872 
0.596 0.561 0.706 0.708 
0.525 0.492 0.591 0.593 
0.463 0.448 0.507 0.508 

0.419 0.443 0.444 
0.400 0.393 0.394 
0.387 0.354 0.354 
0.378 0.321 0.322 
0.372 0.294 0.294 
0.368 0.271 0.271 
0.366 0.251 0.252 
0.364 0.234 0.235 
0.363 0.220 0.220 

Taking the limit as the inner cylinder diameter approaches zero in equation (6) gives 

GD,,, = 

I 

-ln[l-2/Ni,] 
(13) 

which can be written 

GD._. = 

2 

-h[l -Z/Rio] 
(14) 

where NuD.,.“> uses D, as the reference length in place of Di. As curvature effects disappear this reduces to 

%Demb = Nu,. (15) 

This corresponds to natural convection boundary-layer heat transfer to a fluid inside a horizontal cyhnder 
under quasi-steady conditions with no curvature effects. 

No boundary-layer solutions were found in the literature for this situation although experiments have been 
performed with gases and liquids. Deaver and Eckert [17] present heat-transfer results at low Rayleigh numbers 
where conduction and curvature effects are not negligible. Maas and David [18] report a similar study at 
higher Rayleigh numbers where the liquid results could be correlated by 

?i%, = 0.587Rag: (16) 

with the temperature difference in the Rayleigh number Tb- & and the length scale D,. At small Rayleigh 
numbers Deaver and Eckert show that NuDeaom, in equation (14) becomes that for conduction which is 8.0. 
Therefore, as the Rayleigh number approaches zero 

Nu,= 
2 

1 _e-0.25 * 

Equations (16) and (17) were combined with equation (14) to fit the data in [17]. This results in 

%, = [(l _eTo,,,)“3 i(0.%7Ra$$)5/3]3’5 (18) 

(17) 

which is valid for conduction and laminar flow with the exponent 5/3 chosen empirically. 
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No experiments or boundary-layer solutions were found for turbulent ftow aithough Schmidt [19] found 
that turbulent natural convection within a sphere could be correlated by 

- 
Vu, = 0.1 ~~RLz&,~. I191 

An equation similar to (10) is chosen as being a reasonabie estimate for turbulent flow within horizontal cylinders 
for gases and Iiquids 

- 
VU, = 0.1 Rabo3. (20) 

Equations (18) and (20) were combined to give an expression for z,, valid at all Rayleigh numbers 

This is placed in (14) to give a correlation for quasi-steady natural convection heat transfer to a t&rid inside a 
horizontal cylinder valid at any Rayleigh number 

The values of the Nusselt number obtained from this expression are plotted on Fig. 1. The experimental points 
of Deaver and Eckert are correlated very well. The correlation of Maas and David becomes the limiting case 
for laminar flow at large Rayleigh numbers. All the experiments used in obtaining the present correlation were 
performed using moderate Prandtl number liquids. This correlation is not expected to give valid results for 
low Prandtl number fluids. 

FIG. 1. Comparison of correlating equation with experimental results for quasi-steady natural convection to liquids in a 
horizontal cylinder. 

- 
The expressions for Nui and Nu, can be combined with equation (6) to give a relation for the overall Nusselt 

number for heat transfer by natural convection between an inner and outer horizontal cylinder. A Prandtl 
number variation was incorporated into the correlation for %, to fit numerical results [29] for the horizontal 
concentric cylinder configuration at RaL = 104. LIDi = 0.8 and 0.01 < Pr ,< 1000 to within 29;. The resulting 
correlation becomes 

(23b) 

The relation for G can be used in equation (22) also. 
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This cannot be evaluated until ‘Ib is known. However, 
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D,/Di = 2 and 3 at Pr = 0.7. The data in both the 
laminar and turbulent regions agree well with the 
present correlation. The two curves do not differ sub- 
stantially. However, curves for D,/Di > 10 have smaller 
slopes and become turbulent at larger values of RaL 
than those shown on Fig. 2. The change in slope was 
found experimentally by Grigull and Hauf [27] who 
incorporated it into their heat-transfer correlation. 

it is easily found by equating the heat transfer at each 
cylinder which results in 

Tb - T, _ EL&\ 

z- Tb NED_. 
(24) 

- 
with NuDccomb and NuDem, given by equations (12) and 
(22) respectively. In practice four or five iterations are 
required to establish Tb from an initial guess value so 
that (23) can be evaluated. 

At small Rayleigh numbers the heat transfer between 
the cylinders is by conduction. The presence of the 
cylinders limits the size of Si and 6, which was not 
considered previously. Therefore, the Nusselt number 
for conduction becomes the lower limiting value of (23). 
For conduction between two cylinders 

1 
-F- 

WC_, = 
cash- ‘[(D?+;: -4e2)/2DiD,] 

(25) 

with E the distance the inner cylinder is moved from 
its concentric position. 

The value of the overall Nusselt number valid at any 
Rayleigh number is found by combining equations (23) 
and (25) 

with the exponent 15 chosen to fit experimental data. 
The overall equivalent conductivity is defined as 

NuDc 
cq = _ 

Nubacmd 
(27) 

Equations (23) through (27) should correlate heat- 
transfer results for natural convection between two 
horizontal concentric or eccentric cylinders. 

RESULTS AND DISCUSSION 

When the eccentricity is zero, results for concentric 
cylinders should be obtained. Experimental results for 
this configuration obtained with gases and liquids are 
shown on Fig. 2 as are the curves calculated with 

As the diameter of the outer cylinder is increased. 
the heat transfer approaches that of a single horizontal 
cylinder. Curves for various D,/Di ratios are given on 
Fig. 3 at Pr = 100. This Prandtl number is chosen since 
the results are virtually independent of the Prandtl 
number correlations used in equation (23). The tem- 
perature difference used in the Rayleigh number is 
T- T,. The curve for D,/Di = cc corresponds to a free 
horizontal cylinder. The heat-transfer coefficient for 
concentric cylinders is lower than that for a free 
cylinder except when conduction is predominant. The 
results approach the free cylinder limit monotonically, 
not in an oscillatory manner predicted in [6]. There 
are no discontinuities in the results as in the corre- 
lation presented by Powe [22]. To have a heat-transfer 
coefficient within 5% of that for a free cylinder requires 
D,!Di > 360 at RaD, = 10’ and D,/Di > 700 at RaDi = 
10-l. 

Only a limited amount of data has been obtained 
for natural convection between horizontal eccentric 
cylinders. Zagromov and Lyalikov [20] show that the 
heat transfer is essentially the same as with a concentric 
geometry until E/L z 1. Figure 4 shows experimental 
data obtained using air and numerical solutions for 
eccentric cylinders at Pr = 0.7, from [21]. These corre- 
spond to a heated inner cylinder moved below center 
with E/L = 0.325 and D,lDi = 2.6. The present corre- 
lation obtained with Pr = 0.7 agrees fairly well with 
the experiments and does not deviate more than 109, 
from the numerical solutions. 

More than one inner cylinder inside a cylindrical 

FIG. 2. Comparison of correlating equations with experimental results for natural convection between horizontal 
centric cylinders. 

Con- 
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FIG. 3. Effect of D,/D~ on the heat transfer between horizontal concentric cylinders at PF = 100. 
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FIG. 4. Comparison of correlating equations and experimental and numerical results for natural convection between 
horizontnf eccentric cylinders, D,~~i = 2.6. E:L = 0.3X 
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Frc. 5. Mearl Nusselt number for natural convection from !nner cylinders to a horizontal cylindricai enclosure, 
D,iDi = 3.0, Pr = 100. 
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enclosure can be treated by summing the heat transfer 

from each inner cylinder assuming Tb is the same for 
each. This is not expected to give realistic values when 
a large number of inner cylinders are used since the 
bulk temperature will vary considerably at different 
locations. If the inner cylinders have the same diameter 
and are maintained at the same temperature the overall 
Nusselt number for convection becomes 
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EQUATIONS DE CORRELATION POUR LE TRANSFERT DE CHALEUR PAR 
CONVECTION NATURELLE ENTRE CYLINDRES CIRCULAIRES HORIZONTAUX 

Rbum&Des tiquations de correlation pour le transfert de chaleur par convection naturelle autour de 
cylindres horizontaux g I’interieur d’une enceinte cylindrique sent obtenues sur la base d’un modtle de 
couche limite de conduction. La relation est valable pour le transfert de chaleur par conduction. en 
regimes laminaire et turbulent. Les rCsultats tendent vers 1’Cquation du transfert de chaleur autour d’un 
cylindre horizontal lorsque le diamttredu cylindre exterieur devient infini et tendent vers le cas du transfert 
de chaleur quasi-stationnaire g un fluide situ& B I’inttrieur d’un cylindre horizontal lorsque le diametre 
du cylindre inttrieur tend vers z&o. L‘ttude s’applique 6 des gtomt-tries comprenant des cylindres 
horizontaux concentriques ou excentres et a des rang&es de cylindres B I’intirieur de l’enceinte cylindrique. 

KORRELATIONSGLEICHUNGEN FOR DEN WARMEUBERGANG BE1 NATURLICHER 
KONVEKTION ZWISCHEN HORIZONTALEN ZYLINDERN 

Zusammenfassung- Unter Verwendung eines Leitung-Grenzschichtmodells werden Korrelationsglei- 
chungen fiir den Wirmei.ibergang bei natiirlicher Konvektion an horizontalen Zylindern mit zylindrischer 
Ummantelung hergeleitet. Die Korrelation ist giiltig sowohl fiir den Fall der Wgrmeleitung wie fiir den 
Fall laminarer und turbulenter StrGmung. Fiir den Fall, da5 der lu5ere Zylinder unendlich ausgedehnt 
wird. nlhern sich Ergebnisse denen fiir den WBrmeiibergang an einem freien horizontalen Zylinder: 
geht der Durchmesser des inneren Zylinders gegen Null, so erhllt man die Werte fiir den quasi-stationiren 
Fall des Warmeiibergangs an ein Fluid in einem horizontalen Zylinder. Die Korrelation umfa5t die 
konzentrische und exzentrische Anordnung sowie die t\nordnung mehrerer Zylinder in einem SuReren 

Zylinder. 

KOPPEJIRUMOHHbIE YPABHEHMtI AJIB l-IEPEHOCA TEl-UIA ECTECI-BEHHOti 
KOHBEKUMER ME&!lY I-OPM30HTAJIbHbIMM KPYI-JIbIMM UMJlMHiZPAMM 

Aimoraunn - nOJly’IeHb1 KOppe>wLU4OHHble ypaBHeHLlJl IUIR IlepeHOCa TenJla eCTeCTBeHHOfi KOH- 
BeKUHefi OT rOpU30HTaJlbHblX LUiJILiHLlpOB B IlpOCTpaHCTBo MeNly UHJlHHLlpaMH. &Ul BblBOIla ypaB- 
HeHHfi HCnOJlb3OBaHa MOneJlb TenJlOnpOBOnHOCTH B npe6nwxeww IlOrpaHHYHOrO CJIOR. YpaBHeHFiR 
cnpasenmisbl ilnK onwaww npouecca TennonepeHoca 38 cYeT TennonpoBonHocTw, a TaKxe KOH- 
BeKTWBHOrO nepeHOCa JaMHHapHOl’O H Typ6yJleHTHOrO Te’SeHHfi. nOfly’ieHHb&e pe3ynbTaTbl CXORHbI 
c pe3ynbTaTaMH no nepeHocy Tenna OT ropH30HTanbHoro winsrtnpa, Korna nsaMeTp HapyxHoro 
uwu4Hnpa weeT 6eCKOHevHO 6onbmoe 3Haqewie, H no Kea3wcTawioHapHoMy nepetiocy Tenna K 
xmmcmi BHYTPH ropW30flTanbHoro urtnwsnpa, Korna ;IcrabfeTp aHyTpeHHer0 uwnwHnpa npH6nw 
maeTCH K HyJlIo. YpaBHeHHR IlpelICTaBneHbl JJIR rOpH30HTaJlbHblx, KOHUeHTpHqeCKW\ H 3KCUeHTpH- 

vecKHx reoMeTpHti. a TaKme nyqKos urtnusnpoe, noMemeHtfb[x BHYT~H Biiewiero uH.TrrHnpa. 


